PPH-1503(D)/PPH-1506D/PPH-1510D High Precision Dual Output DC Power Supply

Made to Measure

固緯電子實業股份有限公司

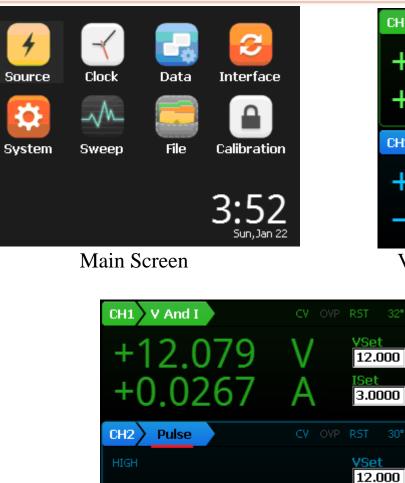
- 1. Introduction of PPH-15xx(D)
- 2. Features
- 3. FAB
- 4. Comparison
- 5. Application

Introduction of PPH-1503(D)

PPH-1503D	CH1	CH2
POWER	45W	18W
Range 1	0 to 15V/ 0 to 3A	0 to 12V/ 0 to 1.5A
Range 2	0 to 9V/ 0 to 5A	NA
PPH-1503	CH1	
PPH-1503 POWER	CH1 45W	

Introduction of PPH-1506D/PPH-1510D

PPH-1506D	CH1	CH2
POWER	45W	36W
Range 1	0 to 15V/ 0 to 3A	0 to 12V/ 0 to 3.0A
Range 2	0 to 9V/ 0 to 5A	NA
PPH-1510D	CH1	CH2
POWER	45W (Rear panel: 4.5V/10A)	36W
Range 1	0 to 15V/ 0 to 3A	0 to 12V/ 0 to 3.0A
Range 2	0 to 9V/ 0 to 5A	NA



Introduction of PPH-15xxD

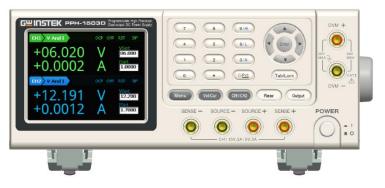
lSet

Pulse Current measurements

1.5000

Voltage/ Current setting and Temperature Display

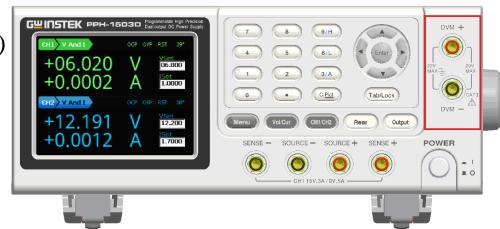
Long integration measurements



normal

- 1. Introduction of PPH-15xx(D)
- 2. Features
- 3. FAB
- 4. Comparison
- 5. Application

- Dual Channel DC Power Output
- 3.5 inch TFT LCD Display
- CV/ CC Operation
- Built-in DVM Measurement Function
- High Measurement Resolution (1mV/0.1µA for 5mA Range)
- Three Current Measurement Range & Setting
- Current Sink Function (Maximum : 3.5A)
- Pulse Current Measurement (Pulse width min: 33us)
- Long Integration Current Measurement
- Sweep Function (Sequential power output)
- Built-in Battery Simulation Function
- OTP & Temperature Display for Heat Sink
- Four Wire Output Open Protection
- Over Voltage Protection
- Support USB (Device& Host)/ GPIB/ LAN
- 5 Groups of Save/ Recall Setting
- KEY-LOCK Function
- External RELAY Control
- Hardcopy for Screenshot, Thermostatically Controlled Fan for Low Noise.



Built-in Digital Voltmeter:

Dedicated input terminal: Located on the front panel Measurement range: 0 to +20Vdc

Read back accuracy: $\pm (0.05\% + 3mV)$

Read back resolution: 1mV

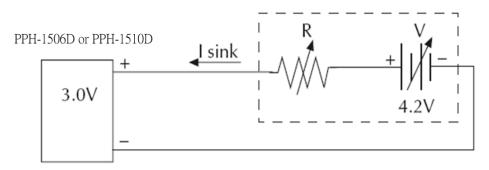
Benefits:

Save the cost of purchasing an extra voltage meter.

Three current ranges and settings:

CH1	PROGRAMMING ACCURACY	READBACK ACCURACY	PROGRAMMING RESOLUTION	READBACK RESOLUTION
Voltage	0.05%+10mV	0.05%+3mV	1 mV	1 mV
Current (1.5A or 5A)	0.16%+5mA	0.2%+400uA	0.5mA	0.1mA
Current (500mA)	0.16%+0.5mA	0.2%+100uA	0.05mA	0.01mA
Current (5mA)	0.16%+5uA	0.2%+1uA	0.5uA	0.1uA

Benefits:

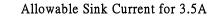

It's suitable to measure DUT's standby current and power consumption at low current levels.

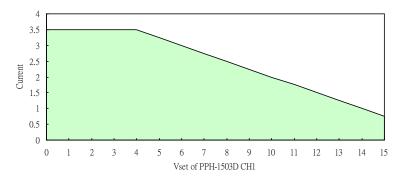
normal

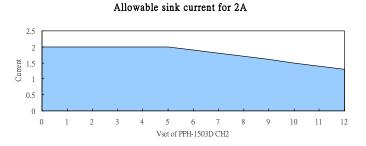
Sink current function :

When connecting with an electric potential circuit and the output voltage of the tested electric potential circuit is greater than that of PPH-15xxD by approximately 0.3V to 2.5V, PPH-15xxD will automatically convert its power supply role to the sink current role acting as a load of voltage source. At this time, the voltage setting of PPH-15xxD can be regarded as the CV setting of an electronic load. (CH1:3.5A, CH2:2A or $3A_{\circ}$)

Benefits:

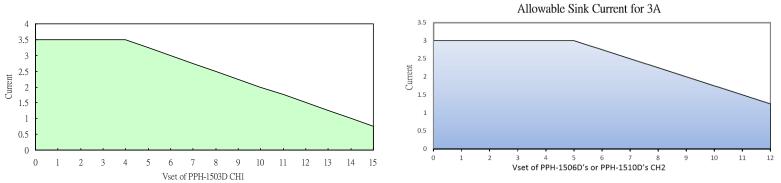

A single PPH-15xxD can be used to charge battery and to simulate battery's load to consume power without extra instruments. It is ideal for tests on battery and portable charger.


GW INSTEK.



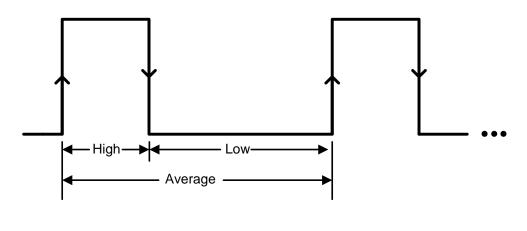
Sink current ranges for PPH-1503D :

CH1		CH2	
Programmed Supply voltage	Maximum allowable sink current	Programmed Supply Maximum allowable sink current voltage	
0~4V	3.5A	0~5V	2.0A
4~15V	3.5A-(0.25A/V)*(Vset-4V)	5~12V	2.0A-(0.1A/V)*(Vset-5V)



Sink current ranges for PPH-1506D/PPH-1510D :

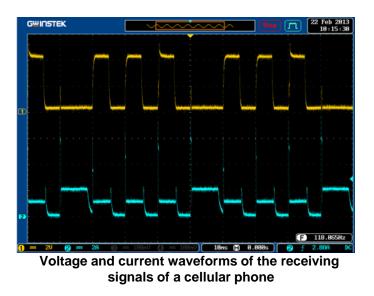
CH1		CH2	
Programmed Supply voltage	Maximum allowable sink current	Programmed Supply Maximum allowable sink current voltage	
0~4V	3.5A	0~5V	3.0A
4~15V	3.5A-(0.25A/V)*(Vset-4V)	5~12V	3.0A-(0.25A/V)*(Vset-5V)



normal

Pulse current measurements (min: 33us):

Pulse current measurement is different from measuring average current of general power supplies. By trigger setting, it can measure instant power consumption when portable devices are in signal transmitting or receiving.


Benefits:

It helps user to decide the required power supply allocation for portable devices such as RF modules, Bluetooth, Cell phone ...etc.

GW INSTEK.

Long integration current measurement:

Long integration current measurement can be used to measuring average current for single or multiple pulse currents.

Benefits:

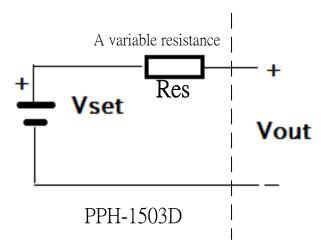
Long integration current measurement is to analyze power consumption for a period of time. For instance, users can measure the average power consumption of a cellular phone in use to analyze its internal RF module parameters.

<u>G</u>UINSTEK.

Sequence Function:

For the practical usage, PPH-15xxD can be programmed to output a sequential voltage variation according to the requirements. There are 1000 steps for users to edit output voltage, current and execution time. Programmable execution time range is from 0.001 second to 3600 seconds and the resolution is 0.001 second. Programmable recurring frequency is from 1 to 9999 or it can be set to infinite execution (set recurring frequency to 0).

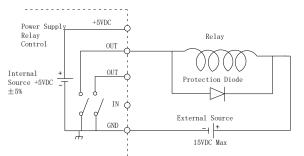
Sweep Setting (Ch1)						
13.918 12.371 10.825 9.278 7.732 6.186 4.639 3.093 1.546 0.0000 0.000	я.	002 0.6	193 Ø.Ø	₩ 1 24 9.99		
Type:List	No	v	Α	S		
	1	1.000	0.5000	0.001		
NCycle:	2	12.000	3.0000	0.001		
	3	3.000	5.0000	0.001		
0002	4	15.000	3.0000	0.001		
Steps:	5	9.000	5.0000	0.001		
0005						


Benefit:

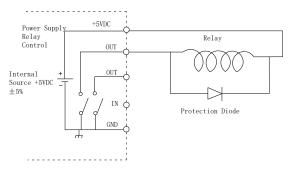
Sequence function is ideal for simulating a sequential voltage variation power output to test DUT.

Battery Simulation Function :

PPH-15xxD's battery simulation function is equivalent to a variable resistance circuit internally connected in series to simulate battery's output impedance. The function can also be regarded as a power supply with a variable internal resistor. The variable internal resistance range is from 0.000Ω to 1.000Ω and the resolution is $1m\Omega$.


Benefits:

PPH-15xxD can be utilized as a battery or an ideal voltage source Vset to be connected with variable resistance Res in series. The above diagram shows battery simulation to produce output voltage Vout.



External Relay Control:

PPH-15xxD provides four control modes, including Limit, Trip, Limit Relay and Trip Relay. Limit mode is to maintain CC output when output current reaches CC value. Trip mode is to turn off power output when output current reaches CC value. When output current reaches CC value, Limit Relay will maintain CC output and execute simultaneous Relay operation to control external device. When output current reaches CC value, Trip Relay mode will turn off power output and execute simultaneous Relay operation to control external device.

Using an external power source to drive the external relay

The external Control for using a PPH-1503D's +5Vdc Power

Benefits:

Assist user to execute simultaneously control and peripherals.

- 1. Introduction of PPH-15xx(D)
- 2. Features

• 3. FAB

- 4. Comparison
- 5. Application

Features	Advantages	Benefits
CH1 provides dual operational ranges for voltage and current	Flexible voltage/current ranges to expand application ranges	Cover wide voltage/current ranges without purchasing an additional power supply.
There are three levels of current measurement settings. The smallest 5mA current level provides 0.1uA read back resolution.	Provide high precision/resolution current measurements	Accurately measure DUT's standby power and power consumption at low current levels to help designers evaluate DUT.
Sink current function	Provide dual channel sink current capability	It can be regarded as a voltage source with sink current capability.
Pulse current measurement to the smallest of 33.3us.	Analyze power consumption of pulse current	Measure pulse current without using an oscilloscope and a current probe
Long integration current measurement	Conduct average current measurements	Satisfy the measurement requirements of communications devices' average current
Sequence Function	The built-in sequence function can program a series of sequential voltage variation power output without using a PC.	1000 sequential steps of voltage, current output, and each execution time can be self-defined.
Built-in battery simulation function	Simulate battery output behavior.	Allow PPH-15xxD to genuinely simulate portable devices' battery output characteristics.
Built-in DVM function	Provide voltage measurement function	Do not have to purchase an additional DVM.
Four Wire Output Open Protection	Trigger protection will be activated to shut down PPH-15xxD's output when output is disconnected with DUT.	Avoid measurements under incorrect conditions and protect DUT.
Front/rear panel output terminal	Selectable front panel output or rear panel output	Front panel is suitable for bench top and rear panel is ideal for production line, ATE system allocation.

- 1. Introduction of PPH-15xx(D)
- 2. Features
- 3. FAB
- 4. Comparison
- 5. Application

Comparison

Brande	GWinsteke	ITECH#	Keithley	Keysight@
FEATURES	PPH-1506/10D	IT6412₽	2306 ₽	66319B/D₽
Dual Range Output 🖉	V ↓ 0~15V/ 0~3A↓ 0~9V / 0~5A↩	V ↓ 0~15V/ 0~3A↓ 0~9V / 0~5A↩	X ₊⊃	X ⊷
Maximum Output Current	PPH-1506D: 5A↓ PPH-1510D: 10A↩	±5 A ₽	5 A.₀	3A ⊷
Display ↩	3.5 Inch TFT LCD∉	LCD43	2-line × 16- character VFD↩	VFD ₽
CC & CV operation₽	₩₽	V ⊷	V ₊⊃	V ,∂
Built-in DVM measurement function⊷	V	V ₽	V ₽	D: V↓ B: X₄⊐
Pulse current measment.	Ve	X 43	Və	Ve
Long integration current measment	V(60s)↩	X 43	V(60s)↩	X ≁

Comparison

Brande	<u>GWInstek</u> #	ITECH#	Keithley	Keysight.
Battery Simulation +?	۷₽	V ₄ ³	V ₽	V € ³
Automated sequential ouptut +	V(Sweep)₽	V(List)₽	V/I(SEQUENCE)₽	X ∉ ³
High Measurement Resolution(0.1uA)↔	٧	V	V¢	V(0.6uA)∛
Sink Current Capability	V (Max : 3.5A)∢	V (Max : 5A)↩	V(MAX: 3A)∂	V(MAX: 2A)₊ [,]
Selectable Output from↓ Front or Rear Panel ₽	Vې	NA≁	X(Rear panel only)↩	X(Rear panel only)⊷
Relay output control 40	V ₄ ²	V ₽	V	V₽
Memory₄	5 Sets₽	NA↔	5 Sets₽	4 Sets₊
High Speed Transient↓ Recovery Time↩	V↓ <40u S⊷	V↓ <50u S₄∍	V↓ <40u S⊦∂	V↓ <20u S⊷
Lock function.	V ₄ ²	V ₽	X ₽	X € ³

н.

Brande	GWInstek	ITECH#	Keithley	Keysight <i>⊷</i>
Protection Function.	OVP / OTP / OCP @	OVP / OTP / OCP ~	OVP ₊∂	OVP/OCP/OTP
Open sense lead detection.	٧	V ₽	V	V
LabView Driver and PC Remote Control Software 49	V ₄ 2	NA₊ ²	NA≁	NA₽
Standard Interface: LAN, USB, Analog Control Interface ⁴³	GPIB∗ ²	V	V ₽	V ₽
Relay output control ≁	USB₽	V	V٩	X₽
Memory+ ²	LAN₽	٧	V٩	NA↔

PPH-1503 vs. PPH-1503D vs. PPH-1506D vs. PPH-1510D

Differences	PPH-1503	PPH-1503D	PPH-1506D	PPH-1510D	
Output channel	1	2	2	2	
Ch1 (45W)	0V~15V,0~3A or 0V~9V,0~5A	0V~15V,0~3A or 0V~9V,0~5A	0V~15V,0~3A or 0V~9V,0~5A	0V~15V,0~3A or 0V~9V,0~5A	
Ch2	N/A	0V~ 12V, 0~1.5A(18W)	0V~ 12V, 0~3.0A(36W)	0V~ 12V, 0~3.0A(36W)	
Battery simulation function	N/A	Internal resistance can be set for Ch1 $(0.001\Omega \sim 1.000\Omega)$ Ch1 \circ			
Current range	2(5mA, 5A)	3(5mA, 500mA, 5A) for Ch1	3(5mA, 500mA, 5A) for Ch1	3(5mA, 500mA, 5A) for Ch1	
Four wire output open protection	NO	YES	YES	YES	
Heat sink temp display	NO	YES	YES	YES	
USB host	NO	YES	YES	YES	
Data sample rate	60Kbits	64Kbits	64Kbits	64Kbits	
USB device protocol	CDC	TMC(1 Upgrade communication speeds. 2 Compatible with WIN8 or higher version drivers.)			

- 1. Introduction of PPH-15xx(D)
- 2. Features
- 3. FAB
- 4. Comparison
- 5. Application

Application

- 1. Pulse current measurement and battery simulation function are ideal for blue tooth, wearable device and mobile communications device.
- 2 Ideal for high precision low power consumption component applications such as current measurements for laser diode, IC with small power consumption.
- 3 Power supply and sink current functions are suitable for charge and discharge applications for battery, mobile power pack.
- 4 Sequence function is ideal for simulating a sequential voltage variation power output to test DUT
- 5 PPH-15xxD can simulate a battery or a charger to conduct charge and discharge tests on DUT
- 6 Ideal for industries with small current measurements especially electrochemistry such as electroplating and electrolyte parameters
- 7 Four Wire Output Open Protection can avoid product damages caused by automatic production line's disconnection and probe's bad connection

